Two Mars years of clouds detected by the Mars Orbiter Laser Altimeter
نویسندگان
چکیده
[1] The Mars Orbiter Laser Altimeter (MOLA) instrument operated as an atmospheric lidar system as well as an altimeter, detecting absorptive clouds in northern latitudes shortly after orbit insertion in October 1997 and reflective clouds over the north polar cap at the start of the Science Phasing Orbits in March 1998. Global cloud measurements commenced with the primary mapping mission in March 1999, with nearly continuous coverage for 1.25 Mars years. MOLA tracked several dust storms, culminating with a major dust storm in June 2001. Reflective clouds, exhibiting distinctive patterns governed by insolation and the dynamics of the atmosphere, were detected at elevations up to 20 km above the surface, chiefly in the polar winter night. MOLA distinguishes cloud returns by pulse width and energy measurements. Unusually strong and brief reflections with minimal extinction suggest precipitation of CO2 snow under supercooled conditions. Weaker cloud reflections occurred at all latitudes. Some reflective daylight clouds at low latitudes suggested convective vortices or ‘‘dust devils.’’ Ground fogs composed of dust and H2O ice formed at night along the seasonal frost line. Absorptive clouds, while not resolved altimetrically, tracked the advancing and receding edges of the seasonal polar caps. The absorptive and reflective clouds provide a seasonal profile of atmospheric activity spanning two Martian years. Winter reflective cloud activity declined to background levels earlier in the second year at both poles, suggesting interannual warming.
منابع مشابه
Observations of the north polar region of Mars from the Mars orbiter laser altimeter.
Elevations from the Mars Orbiter Laser Altimeter (MOLA) have been used to construct a precise topographic map of the martian north polar region. The northern ice cap has a maximum elevation of 3 kilometers above its surroundings but lies within a 5-kilometer-deep hemispheric depression that is contiguous with the area into which most outflow channels emptied. Polar cap topography displays evide...
متن کاملMars orbiter laser altimeter: receiver model and performance analysis.
The design, calibration, and performance of the Mars Orbiter Laser Altimeter (MOLA) receiver are described. The MOLA measurements include the range to the surface, which is determined by the laser-pulse time of flight; the height variability within the footprint determined by the laser echo pulse width; and the apparent surface reflectivity determined by the ratio of the echo to transmitted pul...
متن کاملNight and Day: the Opacity of Clouds Measured by the Mars Orbiter Laser Altimeter (mola)
Introduction: The Mars Orbiter Laser Altimeter (MOLA) [1] on the Mars Global Surveyor spacecraft ranged to clouds over the course of nearly two Mars years [2] using an active laser ranging system. While ranging to the surface, the instrument was also able to measure the product of the surface reflectivity with the two-way atmospheric transmission at 1064 nm. Furthermore, the reflectivity has no...
متن کاملUsgs High-resolution Topomapping of Mars with Mars Orbiter Camera Narrow-angle Images
We describe our initial experiences producing controlled digital elevation models (DEMs) of Mars with horizontal resolutions of ≤10 m and vertical precisions of ≤2 m. Such models are of intense interest at all phases of Mars exploration and scientific investigation, from the selection of safe landing sites to the quantitative analysis of the morphologic record of surface processes. Topomapping ...
متن کاملMars atmospheric CO2 condensation above the north and south poles as revealed by radio occultation, climate sounder, and laser ranging observations
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. [1] We study the condensation of CO 2 in Mars' atmosphere using temperature profiles retrieved from radio occultati...
متن کامل